Electrical waveform from vibrational energy harvesters

Authors:

Luca Callegaro, Cristina Cassiago, Marco Sellone, Rado Lapuh, Boštjan Voljč, Miha Kokalj, Torsten Funck and Tobias Möhring

> Presented by: Miha Kokalj Rio de Janeiro, August 2014

Outline

- Energy harvesting introduction
- EMRP: Metrology for Energy Harvesting
- 3 different measurement systems developed
- Results and comparison

About energy harvesting

Input: Mechanical, solar, wind excitation etc.

Output: Electrical signal

- Properties of output signal:
 - Far from sinusoidal
 - Highly distorted
 - Non periodical
 - Non stationary
- General purposed meters are designed for:
 - Periodical signals
 - near sinusoidal waveforms
 - Poor performance for EH signals

Energy harvester's signal

 Mounted on the VW Transporter

CarVib WheelHub

Automotive applications 1/2

- Modern car is fully wired
- More and more electronics is put in economy car with lots of sensors
- Idea: to harvest energy from mechanical, solar and thermo excitation and supply sensors to operate and send data wirelessly to central computer
- Applications:
 - electric window openers
 - door locking
 - mirror and light adjustment systems
 - tire pressure monitoring
 - infotainment systems
- Energy stored in supercapacitors and batteries

Automotive applications 2/2

• Tire Pressure Monitoring System (TPMS)

- Sensor is battery power, replacement is needed 3-5 years
- Alternative is to use MEMS piezoelectric harvester that provide 40 μW which is sufficient for sensor power supply and wireless data transfer

EMRP project: Metrology for energy harvesting

- Motivation:
 - Poor measurement performance with existing meters
 - No traceability
- Traceable measurements are needed for characterization of Energy harvesters
- Three different systems developed (PTB, INRIM and SIQ)
 - 2 different measurement principle
- Comparison of measurements between PTB, INRIM and SIQ

Test signals

- 1. Signals programmed to mimic output of energy harvesters
- 2. Generated waveforms are periodical, calculable and rich in spectrum
 - CS cosine-shaped burst: f=195 Hz, Vrms=1,361 V
 - RC raised cosine: f=61.5 Hz, Vrms=1,164 V
 - DO damped oscillator: f=97,6 Hz, Vrms=1,392 V

PTB system

- Based on thermal transfer as used in ac-dc transfer technique
- Planar multijunction thermal converter PMJTC in an isothermal state
- PMJTC in equipped with a second heating resistor
- Temperature difference between the heater and the ambience is constant
- Power of PMJTC: difference between the energy delivered by the regulator and energy needed for supply

INRIM system

- Sampling system is based on a commercial ADC sampling board
- Agilent Technologies U2542A, up to 500 kSs⁻¹ sampling rate, 16 bit resolution

• INRIM uses Hann window function w[k]

SIQ system

SIQ

• Sampling system based on a digital multimeter.

- Sampling system based on a digital multimeter.
- SIQ uses Blackman window function
 - v[k] sample set
 - w[k] window function (minimize leakage errors in FFT calculation)
 - W normalization factor

Measurement system comparison

- 3 different EH meters developed traceable to the respective national electrical standards
- All 3 measurement systems were connected in parallel to the output of a waveform generator
- Measurements were performed in controlled conditions in PTB laboratories

Uncertainty sources for SIQ system

- Sampler dc accuracy and stability
- Sampler frequency flatness
- Algorithm accuracy
- Signal stability and noise, including timing jitter

	DC	Bandwidth	Algorithm	Stability	Combined
Sine	1	0.4	1	5	10
raised cosine	1	1	1	1 15	
cosine shaped burst	1	37	1	15	80
damped oscillator	1	2	1	15	30

Uncertainty budget and total uncertainty for RMS value measurement of sampled voltages for four different signals. All values are given in μ V/V.

Uncertainty sources for IRIM system

- SINAD = signal to noise and distortion ratio (the ADC quality)
- CMRR = common-mode rejection ratio
- Algorithm accuracy
- Signal stability and noise, including timing jitter

	Uncertainty component								
	Туре А	Vcal	Drift	Flat	Voffset	SINAD	CMRR	Combined	
Sine	4	12	5	10	3	1	10	17	
raised cosine	7	12	5	10	3	1	10	18	
cosine shaped burst	7	12	5	10	3	1	10	18	
damped oscillator	6	12	5	10	3	1	10	18	

Uncertainty sources for PTB system

- 40 ppm for sinusoidal signals
- **430 ppm** for non-sinusoidal signals
- Dependency from the ambient conditions was found
- Uncertainty could possibly be reduced by using a different heater material and a different geometry for the heaters

Conclusion

• Comparison confirms feasibility of accurate measurements of non-sinusoidal waveforms

