

EVALUATION OF THE AGILENT 3458A TIME JITTER PERFORMANCE

Authors: Rado Lapuh, Boštjan Voljč, Matjaž Lindič

Goal	Measurements	
Determination of time jitter of the Agilent 3458A when external triggering is used at asynchronous two channel sampling	 generator Agilent 33522A used in three different setups with one or two DMMs Agilent 3458A 	
Digital voltmeter sampling timing	second channel of generator) and two DMMs in master-slave mode	

Measuring time jitter

- time jitter or sampling clock noise manifests itself in the amplitude noise whenever the sampled signal changes
- time jitter can be calculated from the frequency dependence of *SNR* when sampling a pure sine wave
 jitter noise limits the accuracy of a sampling system for higher signal frequencies

- 4096 samples taken for each measurement
- 10 repetitions made to calculate mean response and standard deviation of measurement result

Results: Jitter spectrum of Agilent 3458A

Modeling and simulation

$$t_{s} = t_{int} \left[\frac{\left(t_{m} + t_{0} + t_{m,j} \right)}{t_{int}} \right] + t_{int,j}$$

- *t_s* actual sampling instance
- t_{int} internal sampling resolution
- *t_m* ideal master clock sampling instance
- t₀ master clock jitter
- $t_{m,j}$ internal timing jitter
- $t_{int,j}$ start timing offset of master clock relative to internal clock

Results: DCV and DSDC sampled SNR as a function of frequency

Results: Measured sampling time jitter with uncertainties

Timebase used	t _j (DCV mode)	t _j (DSDC mode)
Internal	145 ps ± 5 ps	49 ps ± 4 ps
External	$6.0 \text{ns} \pm 0.4 \text{ns}$	363 ps + 21 ps

Effective timing jitter as retrieved by simulation around small differences between external and internal clock frequencies $f_s = 10$ kHz, $t_{int} = 100$ ns, $t_{m,j} = 450$ ps, N = 4000

		· ·
Master-Slave	6.8 ns ± 0.4 ns	660 ps ± 38 ps

Conclusions

 ✓ a sampling voltmeter internal and external time jitter estimated by measuring frequency dependent SNR
 ✓ measured results consistent with the model at frequencies well beyond the input stage filter cut-off frequency
 ✓ master DMM adds approximately 0.8 ns of its own time jitter while triggering the slave DMM
 ✓ effective time jitter for externally triggered DMM remains well below ±50 ns maximum jitter as correctly specified by manufacturer