

EMRP European Metrology Research Programme Programme of EURAMET

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

BEHAVIOUR OF DIFFERENT PMU ALGORITHMS UNDER STATIC AND DYNAMIC CONDITIONS

Authors: Miha Kokalj¹, Marko Berginc¹, Rado Lapuh², Boštjan Voljč¹, Borut Pinter¹, Matjaž Lindič¹, Zoran Svetik¹ ¹Slovenian Institute of Quality and Metrology (SIQ), ²Metrology Institute of the Republic of Slovenia (MIRS)

Motivation

Phasor measurements units (PMUs) nowadays become an important component of the smart grids as they provide grid state in real-time. The PMUs should accurately measure the fundamental signal, although disturbances are readily present, therefore several estimation algorithms have been already developed. In our study we analyzed six of them and assess their behavior under undisturbed static condition, harmonically disturbed static condition and dynamic conditions. Additionally we determined average computing times and minimum number of required samples for each algorithm.

Harmonic distortion test

Software platform def Frequency error (FE) ser $A(n), f(n), \phi(n)$ disturbances $FE = f_r - f_e$ Total vector error (TVE) $y_f(n)+y_d(n)$ framing $TVE = \sqrt{\frac{(X_{r,e} - X_{r,r})^2 + (X_{i,e} - X_{i,r})^2}{X^2 + X_i^2}}$ calculation algorithms Rate Of Change Of Frequency (ROCOF) estimated reference $ROCOF = \frac{df(t)}{dt}$ $A(F), f(F), \phi(F)$ *A*(F), *f*(F), φ(F) **ROCOF frequency error (RFE)** esults $RFE = ROCOF_r - ROCOF_o$ TVE, FE, RFE

Fig. 1 simulation flow chart used for PMU algorithms testing

Default settings:

- amplitude A = 1 a.u., frequency f = 50 Hz, phase $\varphi = 0$ rad
- sampling frequency $f_s = 1$ kHz, reporting rate $F_s = 10$ Hz

Examined algorithms:

- four Parameter Sine Fit (4PSF)
- 3-points interpolated DFT with Hann window (**iDFT**)
- Spectrum Leakage Correction Algorithm (SLCA)
- interpolated Phase Sensitive Frequency Estimation (PSFEi, PSFE)
- Multi Harmonic Frequency Estimation (MHFE)

Static condition test

						-0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12 -2.0 -1.5 -1.0 -0.5 0.0
algorithm	min. numb. sample	es ^{*a,b} min. numb	. of samples –	1 simulation	n time (µs) ^{*a,c}	40 - 4PSE
4PSF	7	A and	f are complex		188	$30 - \frac{iDFT}{SICA} - \frac{iDFT}{SICA}$
DFT	50	f	^r deviate		106	20 MHFE PSEFi
SLCA	14	nc	o solution		468	$\frac{1}{2}$ $\frac{10}{10}$ $\frac{10}{$
VHFE	13	A	l deviate		276	
' SFEi	31	nc	o solution		711	
PSFE	5	A ar	nd <i>f</i> deviate		298	-5
CE abcaruat	ian nariada (100 mc) avar	race at 10 000 calculati				
^c 5 observat	ion periods (100 ms), aver	rage of 10,000 calculati	ions		Conc	Fig. 4 frequency step-change (50 \rightarrow 50.1 Hz) or frequency ramp test (50 \rightarrow 52 Hz) Usions
^c 5 observat	static condition test	rage of 10,000 calculati # samples / speed	harmonics	۲ step/ramp	Conc f step/ramp	Fig. 4 frequency step-change (50 \rightarrow 50.1 Hz) or frequency ramp test (50 \rightarrow 52 Hz) lusions Less samples per frame increase the resolution of the PMU b
^c 5 observat	tion periods (100 ms), aver static condition test	rage of 10,000 calculati # samples / speed	harmonics	1 step/ramp √	Conc f step/ramp √	Fig. 4 frequency step-change (50 \rightarrow 50.1 Hz) or frequency ramp test (50 \rightarrow 52 Hz) lusions Less samples per frame increase the resolution of the PMU k the algorithms should still obtain at least a certain minimum
^c 5 observat algorithm .PSF .DFT	static condition test	rage of 10,000 calculati # samples / speed √/√ ► / √	harmonics	A step/ramp √ ►	Conc f step/ramp √ √	Fig. 4 frequency step-change (50 \rightarrow 50.1 Hz) or frequency ramp test (50 \rightarrow 52 Hz) Less samples per frame increase the resolution of the PMU k the algorithms should still obtain at least a certain minimum
c 5 observat	static condition test v v	rage of 10,000 calculati # samples / speed $\sqrt{\sqrt{10}}$ $\searrow /\sqrt{10}$	harmonics √ √ √	A step/ramp √ ► √	Conc f step/ramp √ √ √	Fig. 4 frequency step-change (50 \rightarrow 50.1 Hz) or frequency ramp test (50 \rightarrow 52 Hz) Less samples per frame increase the resolution of the PMU I the algorithms should still obtain at least a certain minimum number of samples/signal periods to calculate the estimation
c 5 observat algorithm 4PSF DFT SLCA MHFE	static condition test v v v v v v	rage of 10,000 calculation # samples / speed $\sqrt{\sqrt{1}}$ $\sqrt{1}$	harmonics V V N N	A step/ramp √ ► √ √	Conc f step/ramp v v v	Fig. 4 frequency step-change (50 \rightarrow 50.1 Hz) or frequency ramp test (50 \rightarrow 52 Hz) lusions Less samples per frame increase the resolution of the PMU I the algorithms should still obtain at least a certain minimum number of samples/signal periods to calculate the estimation of the periods to calculate the perio
c 5 observat	static condition test v v v v v v v	rage of 10,000 calculation # samples / speed $\sqrt{\sqrt{v}}$ \sqrt{v}	harmonics ✓ ✓ ✓ ✓ ✓ ✓ ✓	A step/ramp √ ► √ √	Conc fstep/ramp √ √ √ √ ↓	Fig. 4 frequency step-change (50 \rightarrow 50.1 Hz) or frequency ramp test (50 \rightarrow 52 Hz) lusions Less samples per frame increase the resolution of the PMU k the algorithms should still obtain at least a certain minimum number of samples/signal periods to calculate the estimation reliably. The optimal samples per frame is always a comprom

CPEM 2016 • 10–15 July 2016 • Ottawa • Canada